Latest Informations
Chemical Kinetics notesChemical kinetics ncert solutions class 12Redox reaction class 11 notesAcid-Base TitrationsStrength of Acid and Base Solutions
Class 9th maths exercise 1. 5

Class 9th maths exercise 1.5

Class 9 Maths: Exponents and Radicals (Exercise 1.5)

Class 9 Mathematics: Exponents and Radicals

Class 9th maths exercise 1.5

1. Evaluate the Following:

(i) \(64^{\frac{1}{2}}\)

Step 1: Recognize that \(a^{\frac{1}{n}} = \sqrt[n]{a}\).
Step 2: Apply to \(64^{\frac{1}{2}}\):
\[ 64^{\frac{1}{2}} = \sqrt{64} = 8 \quad (\text{since } 8 \times 8 = 64) \]

(ii) \(32^{\frac{1}{5}}\)

Step 1: Convert to radical form: \(\sqrt[5]{32}\).
Step 2: Simplify:
\[ 32 = 2^5 \implies \sqrt[5]{2^5} = 2 \]

(iii) \(125^{\frac{1}{3}}\)

Step 1: Identify the cube root: \(\sqrt[3]{125}\).
Step 2: Calculate:
\[ 125 = 5^3 \implies \sqrt[3]{5^3} = 5 \]

2. Simplify the Expressions:

(i) \(9^{\frac{3}{2}}\)

Step 1: Use \(a^{\frac{m}{n}} = (\sqrt[n]{a})^m\).
Step 2: Break down \(9^{\frac{3}{2}}\):
\[ (\sqrt{9})^3 = 3^3 = 27 \]

(ii) \(32^{\frac{2}{5}}\)

Step 1: Simplify the radical first: \(\sqrt[5]{32} = 2\).
Step 2: Raise to power 2:
\[ (2)^2 = 4 \]

(iii) \(16^{\frac{3}{4}}\)

Step 1: Find the 4th root: \(\sqrt[4]{16} = 2\).
Step 2: Cube the result:
\[ 2^3 = 8 \]

(iv) \(125^{-\frac{1}{3}}\)

Step 1: Apply negative exponent rule: \(a^{-m} = \frac{1}{a^m}\).
Step 2: Simplify:
\[ 125^{-\frac{1}{3}} = \frac{1}{125^{\frac{1}{3}}} = \frac{1}{5} \]

3. Simplify Using Exponent Rules:

(i) \(2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}\)

Step 1: Use \(a^m \cdot a^n = a^{m+n}\).
Step 2: Add exponents:
\[ \frac{2}{3} + \frac{1}{5} = \frac{10 + 3}{15} = \frac{13}{15} \] Result: \(2^{\frac{13}{15}}\)

(ii) \(\left(\frac{1}{3}\right)^{\frac{7}{3}}\)

Step 1: Apply power to numerator and denominator:
\[ \frac{1^{\frac{7}{3}}}{3^{\frac{7}{3}}} = \frac{1}{3^{\frac{7}{3}}} \] Simplified Form: \(3^{-\frac{7}{3}}\)

(iii) \(\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}\)

Step 1: Use \(\frac{a^m}{a^n} = a^{m-n}\).
Step 2: Subtract exponents:
\[ \frac{1}{2} – \frac{1}{4} = \frac{1}{4} \] Result: \(11^{\frac{1}{4}}\)

(iv) \(7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}\)

Step 1: Combine using \((ab)^n = a^n \cdot b^n\):
\[ (7 \cdot 8)^{\frac{1}{2}} = 56^{\frac{1}{2}} = \sqrt{56} \] Simplified Radical: \(2\sqrt{14}\)

Key Exponent Rules

  • \(a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m\)
  • \(a^{-m} = \frac{1}{a^m}\)
  • \(a^m \cdot a^n = a^{m+n}\)
  • \(\frac{a^m}{a^n} = a^{m-n}\)
  • \((ab)^n = a^n \cdot b^n\)

Practice Problems

1. Simplify: \(81^{\frac{3}{4}}\)

Solution:
\[ 81^{\frac{3}{4}} = (\sqrt[4]{81})^3 = 3^3 = 27 \]

2. Find: \(81^{\frac{1}{4}}\)

Show Solution

\(= \sqrt[4]{81} = 3\)

3. Simplify: \(5^{\frac{2}{3}} \cdot 5^{\frac{1}{6}}\)

Show Solution

\(= 5^{\frac{2}{3} + \frac{1}{6}}} = 5^{\frac{5}{6}}}\)

4. Simplify: \(\left(\frac{2}{3}\right)^{\frac{3}{2}}\)

Show Solution

\(= \frac{2^{\frac{3}{2}}}{3^{\frac{3}{2}}} = \frac{\sqrt{8}}{\sqrt{27}}}\)

5. Find: \(64^{-\frac{1}{3}}\)

Show Solution

\(= \frac{1}{64^{\frac{1}{3}}} = \frac{1}{4}\)

Scroll to Top
Scroll to Top