Trigonometry class 10 extra questions

trigonometry class 10 extra questions (R.D. Sharma Level)

Extra Practice Questions

Trigonometry (R.D. Sharma Level)

1. If 5 tan α = 4, show that 5 sin α − 3 cos α5 sin α + 2 cos α = 16.

Given: tan α = 4/5.

Divide the numerator and denominator of the expression by cos α:

LHS = (5 sin α/cos α) − (3 cos α/cos α)(5 sin α/cos α) + (2 cos α/cos α) = 5 tan α − 35 tan α + 2

Substitute the value of tan α:

LHS = 5(4/5) − 35(4/5) + 2 = 4 − 34 + 2 = 16 = RHS. (Proved)

2. If θ is an acute angle and tan θ = ab, find the value of a sin θ − b cos θa sin θ + b cos θ.

Divide numerator and denominator by cos θ:

Expression = a tan θ − ba tan θ + b

Substitute tan θ = a/b:

= a(a/b) − ba(a/b) + b = a2/b − ba2/b + b = (a2 − b2)/b(a2 + b2)/b = a2 − b2a2 + b2.

3. Find the value of x if 2 sin(3x) = √3.

Given: 2 sin(3x) = √3 => sin(3x) = √32.

We know that sin 60° = √32.

Therefore, 3x = 60°.

x = 60°3 = 20°.

4. Evaluate: 4(sin4 30° + cos4 60°) − 3(cos2 45° − sin2 90°).

Substitute the known values: sin 30° = 1/2, cos 60° = 1/2, cos 45° = 1/√2, sin 90° = 1.

= 4[ (1/2)4 + (1/2)4 ] – 3[ (1/√2)2 – (1)2 ]

= 4[ 1/16 + 1/16 ] – 3[ 1/2 – 1 ]

= 4[ 2/16 ] – 3[ -1/2 ]

= 4(1/8) + 3/2 = 1/2 + 3/2 = 4/2 = 2.

5. If A = 60° and B = 30°, verify that sin(A – B) = sin A cos B − cos A sin B.

LHS: sin(A – B) = sin(60° – 30°) = sin(30°) = 12.

RHS: sin A cos B – cos A sin B = sin 60° cos 30° – cos 60° sin 30°

= (√32)(√32) – (12)(12)

= 3414 = 24 = 12.

Since LHS = RHS, the identity is verified.

… (Questions 6-20 follow)

6. Prove that (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.

LHS = (sin θ + cos θ)(sin θcos θ + cos θsin θ)

= (sin θ + cos θ)(sin2θ + cos2θsin θ cos θ)

= (sin θ + cos θ)(1sin θ cos θ) = sin θ + cos θsin θ cos θ

= sin θsin θ cos θ + cos θsin θ cos θ = 1cos θ + 1sin θ = sec θ + cosec θ = RHS. (Proved)

7. Prove that tan A + sec A – 1tan A – sec A + 1 = 1 + sin Acos A.

In the numerator, replace 1 with (sec2A – tan2A):

LHS = (tan A + sec A) – (sec2A – tan2A)tan A – sec A + 1

= (sec A + tan A) – (sec A – tan A)(sec A + tan A)tan A – sec A + 1

Factor out (sec A + tan A):

= (sec A + tan A) [1 – (sec A – tan A)]tan A – sec A + 1 = (sec A + tan A) [1 – sec A + tan A]tan A – sec A + 1

= sec A + tan A = 1cos A + sin Acos A = 1 + sin Acos A = RHS. (Proved)

8. If cos θ + sin θ = √2 cos θ, show that cos θ – sin θ = √2 sin θ.

Given: sin θ = √2 cos θ – cos θ = cos θ(√2 – 1).

sin θ = cos θ(√2 – 1) × √2 + 1√2 + 1 = cos θ(2 – 1)√2 + 1

sin θ = cos θ√2 + 1

(√2 + 1)sin θ = cos θ => √2 sin θ + sin θ = cos θ

cos θ – sin θ = √2 sin θ. (Proved)

9. If tan A + sin A = m and tan A – sin A = n, prove that m2 – n2 = 4√(mn).

LHS: m2 – n2 = (m-n)(m+n)

= [(tan A + sin A) – (tan A – sin A)][(tan A + sin A) + (tan A – sin A)]

= (2 sin A)(2 tan A) = 4 tan A sin A.

RHS: 4√(mn) = 4√[(tan A + sin A)(tan A – sin A)]

= 4√(tan2A – sin2A) = 4√(sin2Acos2A – sin2A)

= 4√[sin2A(1cos2A – 1)] = 4√[sin2A(sec2A – 1)]

= 4√(sin2A tan2A) = 4 sin A tan A.

Since LHS = RHS, it is proved.

10. Prove that sin6θ + cos6θ = 1 – 3sin2θcos2θ.

LHS = (sin2θ)3 + (cos2θ)3

Using a3 + b3 = (a+b)(a2 – ab + b2):

= (sin2θ + cos2θ)(sin4θ – sin2θcos2θ + cos4θ)

= (1)[(sin2θ + cos2θ)2 – 2sin2θcos2θ – sin2θcos2θ]

= (1)2 – 3sin2θcos2θ = 1 – 3sin2θcos2θ = RHS. (Proved)

11. Prove: √(sec2θ + cosec2θ) = tan θ + cot θ.

LHS = √[(1 + tan2θ) + (1 + cot2θ)]

= √(tan2θ + cot2θ + 2)

Since 2 = 2 × tan θ × cot θ (as tanθcotθ=1):

= √(tan2θ + cot2θ + 2tanθcotθ)

= √[(tan θ + cot θ)2] = tan θ + cot θ = RHS. (Proved)

12. If x = a sec θ and y = b tan θ, eliminate θ.

We have sec θ = x/a and tan θ = y/b.

Using the identity sec2θ – tan2θ = 1:

(x/a)2 – (y/b)2 = 1

x2a2y2b2 = 1. This is the required relation without θ.

13. Find acute angles A and B, if sin(A + 2B) = √3/2 and cos(A + 4B) = 0.

sin(A + 2B) = √3/2 => A + 2B = 60° —(1)

cos(A + 4B) = 0 => A + 4B = 90° —(2)

Subtracting (1) from (2): (A + 4B) – (A + 2B) = 90° – 60°

2B = 30° => B = 15°.

Substitute B = 15° in (1): A + 2(15°) = 60° => A + 30° = 60° => A = 30°.

So, A = 30° and B = 15°.

14. Prove that 1 + cos θ – sin2θsin θ(1 + cos θ) = cot θ.

LHS = (1 – sin2θ) + cos θsin θ(1 + cos θ)

= cos2θ + cos θsin θ(1 + cos θ)

= cos θ(cos θ + 1)sin θ(1 + cos θ)

= cos θsin θ = cot θ = RHS. (Proved)

15. If x = h + a cos θ and y = k + b sin θ, eliminate θ.

From the equations, we get: cos θ = x – ha and sin θ = y – kb.

Using the identity sin2θ + cos2θ = 1:

(y – kb)2 + (x – ha)2 = 1.

(x – h)2a2 + (y – k)2b2 = 1.

16. If sec θ = x + 14x, prove that sec θ + tan θ = 2x or 12x.

We know tan2θ = sec2θ – 1.

tan2θ = (x + 14x)2 – 1 = x2 + 2(x)(14x) + 116x2 – 1

= x2 + 12 + 116x2 – 1 = x212 + 116x2 = (x – 14x)2.

So, tan θ = ± (x – 14x).

Case 1: tan θ = x – 14x. Then sec θ + tan θ = (x + 14x) + (x – 14x) = 2x.

Case 2: tan θ = -(x – 14x). Then sec θ + tan θ = (x + 14x) – (x – 14x) = 24x = 12x. (Proved)

17. Prove: cot A + cosec A – 1cot A – cosec A + 1 = 1 + cos Asin A.

This is a variation of Q7. We use 1 = cosec2A – cot2A in the numerator.

LHS = (cot A + cosec A) – (cosec2A – cot2A)cot A – cosec A + 1

= (cosec A + cot A) [1 – (cosec A – cot A)]cot A – cosec A + 1

= (cosec A + cot A) [1 – cosec A + cot A]1 – cosec A + cot A = cosec A + cot A.

= 1sin A + cos Asin A = 1 + cos Asin A = RHS. (Proved)

18. If cot θ = 1√3, find the value of 1 – cos2θ2 – sin2θ.

Given cot θ = 1/√3, so θ = 60°.

The expression is sin2θ2 – sin2θ.

Substitute θ = 60°. sin 60° = √3/2.

= (√3/2)22 – (√3/2)2 = 3/42 – 3/4 = 3/4(8-3)/4 = 3/45/4 = 35.

19. Prove that sin θcot θ + cosec θ = 2 + sin θcot θ – cosec θ.

Rearrange the equation: sin θcot θ + cosec θsin θcot θ – cosec θ = 2.

LHS = sin θ [1cot θ + cosec θ1cot θ – cosec θ]

= sin θ [(cot θ – cosec θ) – (cot θ + cosec θ)cot2θ – cosec2θ]

= sin θ [-2 cosec θ-1] = sin θ [2 cosec θ]

= sin θ [2 (1sin θ)] = 2 = RHS. (Proved)

20. If cosec θ – sin θ = a and sec θ – cos θ = b, prove that a2b2(a2 + b2 + 3) = 1.

a = 1sin θ – sin θ = 1-sin2θsin θ = cos2θsin θ.

b = 1cos θ – cos θ = 1-cos2θcos θ = sin2θcos θ.

ab = (cos2θsin θ)(sin2θcos θ) = sin θ cos θ.

LHS = (ab)2(a2 + b2 + 3) = (sinθcosθ)2[cos4θsin2θ + sin4θcos2θ + 3]

= (sinθcosθ)2[cos6θ + sin6θsin2θcos2θ + 3]

= cos6θ + sin6θ + 3sin2θcos2θ

= (cos2θ)3 + (sin2θ)3 + 3sin2θcos2θ(1)

= (cos2θ)3 + (sin2θ)3 + 3sin2θcos2θ(sin2θ+cos2θ)

This is the expansion of (a+b)3 = a3+b3+3ab(a+b). So it equals (sin2θ + cos2θ)3 = (1)3 = 1 = RHS. (Proved)

Scroll to Top